

SET

MECHANICAL ENGINEERING

 Starting from the same initial conditions, an ideal gas expands from volume V₁ to V₂ in three different ways, the work done by the gas is W₁ if the process is purely isothermal, W₂ if purely isobaric and W₃ if purely adiabatic, then

(a)
$$W_2 > W_1 > W_3$$

(b)
$$W_2 > W_3 > W_1$$

(c)
$$W_1 > W_2 > W_3$$

(d)
$$W_1 > W_3 > W_2$$

 A beaker filled with hot water in a room cools from 70°C to 65°C in t₁ minutes, 65°C to 60 in t₂ minutes and from 60°C to 55°C in t₃ minutes. Then,

(a)
$$t_1 > t_2 > t_3$$

(b)
$$t_1 = t_2 = t_3$$

(c)
$$t_1 < t_2 < t_3$$

3. A house refrigerator with its door open is switched on in a closed room. The air in the room is

- (a) cooled
- (b) remains at same temperature
- (c) heated
- (d) heated or cooled depending on atmospheric pressure

An elevator has a mass of 5000 kg. When the tension in the supporting cable is 60 kN, the
acceleration of the elevator is nearly

(a)
$$8 \text{ m/s}^2$$

(c)
$$-2 \text{ m/s}^2$$

(d)
$$2 \text{ m/s}^2$$

5. The piston of a steam engine moves with simple harmonic motion. The speed of rotation of crank is 120 rpm with a stroke of 2 m. What is the velocity of piston when it is 0.5 m from the centre?

(a)
$$4\pi\sqrt{3}$$

(b)
$$\pi \sqrt{3}$$

(c)
$$2\pi\sqrt{3}$$

(d)
$$3\pi\sqrt{3}$$

6. The sine of the angle between the two vectors a = 3i + j + k and b = 2i - 2j + k is

(a) $\sqrt{\frac{74}{99}}$

(b) $\sqrt{\frac{25}{99}}$

(c) $\sqrt{\frac{37}{99}}$

(d) $\sqrt{\frac{5}{51}}$

7. Equation of the line normal to function $f(x) = (x-8)^{2/3} + 1$ at P(0, 5) is

(a) y = 3x - 5

(b) 3y = x - 15

(c) 3y = x + 15

(d) y = 3x + 5

 There are 20 locks and 20 matching keys. Maximum number of trials required to match all the locks is

(a) 190

(b) 210

(c) 400

(d) 40

9. If $\phi(x, y, z)$ is a scalar function and if $\nabla^2 f = 0$, then ϕ is

(a) Irrational

(b) Harmonic

(c) Irrotational

(d) Solenoidal

10. A and B are two candidates appearing for an interview by a company. The probability that A is selected is 0.5 and the probability that both A and B are selected is at most 0.3. The probability of B getting selected is

(a) 0.9

(b) ≤ 0.3

(c) ≤ 0.6

(d) 0.5

11. The reading of a spring balance is from 0 to 200 N and is 10 cm long. A body suspended from the spring balance is observed to oscillate vertically at 2 Hz. The mass of the body is nearly

(a) 22.5 kg

(b) 12.5 kg

(c) 37 kg

(d) 45 kg

12. A ball is dropped vertically from a height d above the ground. It hits the ground and bounces up to a height d/2. Neglecting the subsequent motion and air resistance, its velocity (v) varies with height (h) above the ground as

13. A 10 kW drilling machine is used to drill a bore in a small aluminium block of mass 8 kg. How much is the rise in temperature of the block in 2.5 minutes, assuming 50% of power is used up in heating the block? (specific heat of aluminum: 0.91 J/(g°C))

(a) 50°C

(b) 206°C

(c) 103°C

(d) 227°C

14. In the figure shown, the minimum ratio of μ_1/μ_2 so that the masses move together with the application of force F is

(a) 5

(b) 2

(c) 4

(d) 3

15. A thin wire of length L and uniform linear mass density ρ is bent into a circular loop with centre O as shown in figure. The moment of inertia of the loop about the axis XX' is

- (a) $\rho L^3 / 16 \pi^2$
- (b) $\rho L^3 / 8\pi^2$
- (c) $5\rho L^3/16\pi^2$
- (d) $3\rho L^3/8\pi^2$
- 16. A 10 kg mass is hung from 2 light, inextensible strings as shown. The tension in the horizontal string is nearly

17. A block of ice at -10°C is slowly heated and converted to steam at 100°C. Which of the following curves represent the phenomena qualitatively?

SET

MECHANICAL ENGINEERING

18.	If the temperature	of the	sun i	s doubled,	the	rate	of energy	received	on	earth	will	be
	increased by a factor	r of										

(a) 2

(b) 4

(c) 8

(d) 16

19. The transmission of heat by molecular collision is called

(a) Convection

(b) Conduction

(c) Radiation

(d) Ionisation

20. If two ends of rods of length L and radius r, made of same material are kept at the same temperature difference, which of the following rods conduct most heat per unit time?

(a) $L = 50 \, \text{cm}, r = 1 \, \text{cm}$

(b) L = 2 cm, r = 0.5 cm

(c) $L = 100 \, \text{cm}, r = 2 \, \text{cm}$

(d) L=3cm, r=1cm

21. A thermometer works on the principle of

(a) Law of stable equilibrium

(b) Zeroth law of thermodynamics

(c) First law of thermodynamics

(d) Second law of thermodynamics

22. The working temperatures in evaporator and condenser coils of a refrigerator are -25°C and 30°C, respectively. The COP of the refrigerator is 0.85 of the maximum COP for a power input of 2 kW. The refrigeration effect produced will be

(a) 7.6 kW

(b) 9 kW

(c) 10.2 kW

(d) 12 kW

23. A mercury thermometer was first placed in melting ice and the length of mercury column was observed to be 10 mm; when it was placed in steam, the length of the column was 250 mm. When placed in tap water, the length of the column was 58 mm. The temperature of the tap water is

(a) 24.2°C

(b) 20°C

(c) 38.4°C

(d) 4.14°C

24. The amount of steam (at 100°C) required to raise the temperature of 200 g of water from 60°C to 100°C is

(a) 10 g

(b) 16.8 g

(c) 20 g

(d) 14.8 g

25. A engine works on Carnot cycle between 727°C and 227°C. The efficiency of the engine is

(a) 50%

(b) 75.4%

(c) 31.2%

(d) 68.8%

26. A steam thermal power plant works on

(a) Brayton cycle

(b) Rankine cycle

(c) Carnot cycle

(d) Otto cycle

27. A boat which has a speed of 5 km/h in still water crosses a river of width 1 km along the shortest path in 15 min. The velocity of the river in km/h is

(a) 3

(b) 1

(c) 4

(d) √41

28. In 1s, a particle goes from point A to point B, moving in a semicircle (as shown in figure).

The magnitude of the average velocity is

- (a) 3.14 m/s
- (b) 1 m/s
- (c) 2 m/s
- (d) Zero

29. A block is made to slide down an inclined plane (30° with horizontal) which is smooth. It starts sliding from rest and takes a time 't' to reach the bottom of the plane. An identical body is freely dropped from the same point. The time the body takes to reach the bottom is

(a) t

(b) $\frac{t}{2}$

(c) $\frac{t}{3}$

(d) $\frac{t}{4}$

A

30.	What parameter will remain constant in a throttling process?							
	(a)	Entropy	(b)	Temperature				
	(c)	Pressure	(d)	Enthalpy				
31.	The main objective of 'shot peening' is to improve which property of metal parts							
	(a)	Surface finish	(b)	Ductility				
	(c)	Fatigue strength	(d)	None of the above				
32.	Whe	en a material is strain harden	ed?					
	(a) its yield strength reduces and ductility increases							
	(b) its yield strength increases and ductility reduces							
	(c)	both yield strength and due	tility increases					
	(d)	both yield strength and due	tility reduces					
33.	Which thread is more suited in power screw to take load on both directions?							
	(a)	Acme thread	(b)	Square thread				
	(c)	Buttress thread	(d)	None of these				
34.	A hole is specified as $\phi 50^{(+0.050/-0.000)}$ mm. The mating shaft has a clearance fit with minimum clearance of 0.02 mm. The tolerance on the shaft is 0.03 mm. Maximum clearance between hole and shaft is							
	(a)	0.100 mm	(b)	0.030 mm				
	(c)	0.080 mm	(d)	0.070 mm				
35.		cutting operation the cutting 350 in Taylor's equation, the	and the same of th	reduced by 20%. Assuming $n = 0.5$ and life is				
	(a)	46%	(b)	48%				
	(c)	59%	(d)	56%				
36.	Mas	s production of seamless tubes	s is by the proce	ss of				

Rolling

Welding

(a)

(b)

(d)

Spinning

Extrusion

SET

MECHANICAL ENGINEERING

١	-	-	
	А		
1	μ	¥.	
_	2	_	_

Miss									
(a)	Very high pouring temperature of meta	al (b)	Absorption of gases by liquid r	netal					
(c)	Insufficient fluidity of molten metal	(d)							
A simple steam power cycle receives 100,000 kJ/min as heat transfer from hot combustion gases and rejects 66,000 kJ/min as heat transfer to the environment. If the pump power required is 1400 kJ/min, the thermal efficiency of the cycle and turbine power output is									
(a)	51.5% and 590 kW		34% and 590 kW						
(c)	51.5% and 566.6 kW	(d)	34% and 566.6 kW						
Air at 100 kPa, 2°C occupies a 10 liter piston-cylinder device that is arranged to maintain constant air pressure. This device is now heated until its volume is 20 liters. The work produced by the air is									
(a)	20 kJ	(b)	10 kJ						
(c)	$2 \mathrm{\; kJ}$	(d)	1 kJ						
A hea	at engine working with a thermal en	fficier	acy of 35% receives 2 kW of he	at from a					
(a)	0.7 kW	(b)							
(c)	1.3 kW	(d)	1.65 kW						
Joule-	Thompson coefficient for an ideal gas	is							
(a)	higher than zero	-	less than zero						
(c)	zero	(d)	1						
Air is	heated from 0°C to 100°C in a sealed n	netal	container. Its density						
(a)	Increases slightly	(b)							
(c)	Remains the same	(d)	Change cannot be predicted						
If a certain mass of moist air in an air tight vessel is heated to a higher temperature, then									
(a)									
(c)		20.50	Relative humidity of the air decr						
	(a) (c) A sin gase required (a) (c) Air a const production (a) (c) A her furnation (a) (c) Joule (a) (c) Air is (a) (c) If a ce (a)	(a) Very high pouring temperature of metal (b) Insufficient fluidity of molten metal A simple steam power cycle receives 100,0 gases and rejects 66,000 kJ/min as heat required is 1400 kJ/min, the thermal efficient (a) 51.5% and 590 kW (c) 51.5% and 566.6 kW Air at 100 kPa, 2°C occupies a 10 liter pist constant air pressure. This device is now produced by the air is (a) 20 kJ (c) 2 kJ A heat engine working with a thermal effurnace. The waste heat rejected from the effurnace. The waste heat rejected from the effurnace. The waste heat rejected from the effurnace in the same of the constant air in an air tight of the constant air mass of moist air in an air tight of the air increases.	(c) Insufficient fluidity of molten metal (d) A simple steam power cycle receives 100,000 kg gases and rejects 66,000 kJ/min as heat transforequired is 1400 kJ/min, the thermal efficiency of (a) 51.5% and 590 kW (b) (c) 51.5% and 566.6 kW (d) Air at 100 kPa, 2°C occupies a 10 liter piston-cyconstant air pressure. This device is now heat produced by the air is (a) 20 kJ (b) (c) 2 kJ (d) A heat engine working with a thermal efficient furnace. The waste heat rejected from the engine (a) 0.7 kW (b) (c) 1.3 kW (d) Joule-Thompson coefficient for an ideal gas is (a) higher than zero (b) (c) zero (d) Air is heated from 0°C to 100°C in a sealed metal (a) Increases slightly (b) (c) Remains the same (d) If a certain mass of moist air in an air tight vessel (a) Specific humidity of the air increases (b)	(a) Very high pouring temperature of metal (b) Absorption of gases by liquid note in the container. Its density (b) Insufficient fluidity of molten metal (d) Improper alignment of mould in the container. Its density (c) Insufficient fluidity of molten metal (d) Improper alignment of mould in the container. Its density (d) Improper alignment of mould in the container. Its density (e) Insufficient fluidity of molten metal (d) Improper alignment of mould in the container. Its density (d) Improper alignment of mould in the container. Its density (e) Insufficient fluidity of molten metal (d) Improper alignment of mould in the container. Its density (d) Improper alignment of mould in the container. Its density (e) Insufficient fluidity of molten metal (d) Improper alignment of mould in the container. Its density (d) Increases slightly (d) Indicate the container. Its density (e) Remains the same (d) Change cannot be predicted (a) Specific humidity of the air increases (b) Specific humidity of the air decrease in the container in the container. Its density of the cycle and turbine power out the container. Its density (a) Specific humidity of the air increases (b) Specific humidity of the air decrease in the cycle and turbine power out the container. Its density (a) Specific humidity of the air increases (b) Specific humidity of the air decrease in the cycle and turbine power out the container. Its density (e) Remains the same (d) Change cannot be predicted					

MECHANICAL ENGINEERING

44. Air is accelerated isentropically from 100 m/s to 300 m/s in a nozzle. If the temperature at the inlet is 127°C, the inlet Mach number is (take R = 287J/(kg K) and specific heat ratio = 1.4)

(a) 0.249

(b) 0.442

(c) 0.747

(d) 0.333

45. Two equal forces are acting at a point with an angle of 60° between them. If the resultant force is equal to $60\sqrt{3}$, what is the magnitude of each force?

(a) 30

(b) 50

(c) 40

(d) 60

46. A two member truss ABC is configured as shown in figure. The force in the member AB is

(a) 15 kN

(b) 30 kN

(c) 20 kN

(d) 5 kN

47. Four forces of magnitudes 20 N, 40 N, 60 N and 80 N are acting respectively along the four sides of a square ABCD as shown in figure. The magnitude of resultant is

(a) $40\sqrt{2} N$

(b) $50\sqrt{2} N$

(c) 45√2 N

(d) 60√2 N

In a simply supported beam loaded as shown in figure, the maximum bending moment in Nm is

- 25 (a)
- 35 (c)

- 30 (b)
- 60 (d)
- Two steel rails each of 12 m length are laid with a gap of 1.5 mm at ends at a temperature 49. of 24°C. The thermal stress produced at a temperature of 40°C is (take $E = 2 \times 10^5 \text{ N/mm}^2$, coefficient of thermal expansion = 12×10^{-6} /°C)
 - 10.5 N/mm² (a)

12.5 N/mm²

13.4 N/mm² (c)

- 15.5 N/mm² (d)
- An aluminum tensile test specimen has a diameter, $d_o = 25 \,\mathrm{mm}$ and a gauge length 50. of $L_o = 250\,\mathrm{mm}$. If a force of 175 kN elongates the gauge length by 1.25 mm, the modulus of elasticity of the material is nearly
 - 71 GPa (a)

71 MPa (b)

142 GPa (c)

- 142 MPa (d)
- A tubular shaft, having an inner diameter of 30 mm and an outer diameter of 40 mm, is 51. to be used to transmit 80 kW of power. The speed of rotation of the shaft so that the shear stress will not exceed 50 MPa is
 - (a) 29.6 rpm

3557.4 rpm (b)

1778.7 rpm (c)

- 59.2 rpm
- A cantilever beam of length L is subjected to a concentrated load P at a distance of L/3 from 52. the free end. The deflection at the free end is
 - (a)

(b) $\frac{14}{81} \frac{PL^3}{EI}$ (d) $\frac{1}{2} \frac{PL^3}{EI}$

(c) $\frac{7}{18} \frac{PL^3}{EI}$

MECHANICAL ENGINEERING

- 53. What is the common surface hardening treatment in steel?
 - (a) Carburizing

(b) Tempering

(c) Quenching

- (d) None of the above
- 54. Which of the following order of crystal structure will match with metals Iron Copper Zinc in that order?
 - (a) BCC-HCP-FCC

(b) FCC - BCC - HCP

(c) HCP - FCC - BCC

- (d) BCC-FCC-HCP
- 55. A resistance spot-welding operation is performed on two pieces of 1.5 mm thick sheet steel using 12000 amps current for a duration of 0.20 second. The electrodes are 6 mm in diameter at the contacting surfaces. Resistance is assumed to be 0.0001 ohms and the resulting weld nugget is 6 mm in diameter and 2.5 mm thick. The unit melting energy for the metal is 12 J/mm³. What portion of heat generated was used to form the weld?
 - (a) 29.4%

(b) 70.6%

(c) 58.8%

- (d) 41.2%
- 56. A manometer is used to measure the pressure of a gas in a tank. The fluid used has a specific gravity of 0.85 and the manometer column height is 55 cm, as shown in figure. If the local atmospheric pressure is 96 kPa, what is the absolute pressure in the tank?

(a) 4.6 kPa

(b) 98.6 kPa

(c) 100.6 kPa

(d) 200 kPa

MECHANICAL ENGINEERING

57. A crane is used to lower weights into the sea (sea water density =1025 kg/m³) for an underwater construction project. What is the percentage reduction in the tension in the rope of the crane due to a rectangular $0.4m \times 0.4m \times 3m$ concrete block (density = 2300kg/m³) when it is completely immersed in water compared to the tension in the rope when it was suspended in air

(a) 45%

(b) 55%

(c) 65%

(d) 75%

58. A steady, incompressible, two-dimensional velocity field is given by,

$$\vec{V} = (u, v) = (0.5 + 0.8x)\vec{i} + (1.5 - 0.8y)\vec{j}$$

The number of stagnation points there in the flow field is

(a) zero

(b) many

(c) 1

(d) 2

59. A piezometer and a Pitot tube are tapped into a horizontal water pipe, as shown in figure. The velocity of water at the center of the pipe is

(a) 2.4 m/s

(b) 1.53 m/s

(c) 2.07 m/s

(d) 1.93 m/s